101.254.99.130

Regular View Raw Data
Last Seen: 2024-05-14
Tags:
database

Vulnerabilities

Note: the device may not be impacted by all of these issues. The vulnerabilities are implied based on the software and version.

CVE-2023-51767 OpenSSH through 9.6, when common types of DRAM are used, might allow row hammer attacks (for authentication bypass) because the integer value of authenticated in mm_answer_authpassword does not resist flips of a single bit. NOTE: this is applicable to a certain threat model of attacker-victim co-location in which the attacker has user privileges.
CVE-2023-51385 In ssh in OpenSSH before 9.6, OS command injection might occur if a user name or host name has shell metacharacters, and this name is referenced by an expansion token in certain situations. For example, an untrusted Git repository can have a submodule with shell metacharacters in a user name or host name.
CVE-2023-51384 In ssh-agent in OpenSSH before 9.6, certain destination constraints can be incompletely applied. When destination constraints are specified during addition of PKCS#11-hosted private keys, these constraints are only applied to the first key, even if a PKCS#11 token returns multiple keys.
CVE-2023-48795 The SSH transport protocol with certain OpenSSH extensions, found in OpenSSH before 9.6 and other products, allows remote attackers to bypass integrity checks such that some packets are omitted (from the extension negotiation message), and a client and server may consequently end up with a connection for which some security features have been downgraded or disabled, aka a Terrapin attack. This occurs because the SSH Binary Packet Protocol (BPP), implemented by these extensions, mishandles the handshake phase and mishandles use of sequence numbers. For example, there is an effective attack against SSH's use of ChaCha20-Poly1305 (and CBC with Encrypt-then-MAC). The bypass occurs in chacha20-poly1305@openssh.com and (if CBC is used) the -etm@openssh.com MAC algorithms. This also affects Maverick Synergy Java SSH API before 3.1.0-SNAPSHOT, Dropbear through 2022.83, Ssh before 5.1.1 in Erlang/OTP, PuTTY before 0.80, AsyncSSH before 2.14.2, golang.org/x/crypto before 0.17.0, libssh before 0.10.6, libssh2 through 1.11.0, Thorn Tech SFTP Gateway before 3.4.6, Tera Term before 5.1, Paramiko before 3.4.0, jsch before 0.2.15, SFTPGo before 2.5.6, Netgate pfSense Plus through 23.09.1, Netgate pfSense CE through 2.7.2, HPN-SSH through 18.2.0, ProFTPD before 1.3.8b (and before 1.3.9rc2), ORYX CycloneSSH before 2.3.4, NetSarang XShell 7 before Build 0144, CrushFTP before 10.6.0, ConnectBot SSH library before 2.2.22, Apache MINA sshd through 2.11.0, sshj through 0.37.0, TinySSH through 20230101, trilead-ssh2 6401, LANCOM LCOS and LANconfig, FileZilla before 3.66.4, Nova before 11.8, PKIX-SSH before 14.4, SecureCRT before 9.4.3, Transmit5 before 5.10.4, Win32-OpenSSH before 9.5.0.0p1-Beta, WinSCP before 6.2.2, Bitvise SSH Server before 9.32, Bitvise SSH Client before 9.33, KiTTY through 0.76.1.13, the net-ssh gem 7.2.0 for Ruby, the mscdex ssh2 module before 1.15.0 for Node.js, the thrussh library before 0.35.1 for Rust, and the Russh crate before 0.40.2 for Rust.
CVE-2023-38408 The PKCS#11 feature in ssh-agent in OpenSSH before 9.3p2 has an insufficiently trustworthy search path, leading to remote code execution if an agent is forwarded to an attacker-controlled system. (Code in /usr/lib is not necessarily safe for loading into ssh-agent.) NOTE: this issue exists because of an incomplete fix for CVE-2016-10009.
CVE-2021-41617 4.4sshd in OpenSSH 6.2 through 8.x before 8.8, when certain non-default configurations are used, allows privilege escalation because supplemental groups are not initialized as expected. Helper programs for AuthorizedKeysCommand and AuthorizedPrincipalsCommand may run with privileges associated with group memberships of the sshd process, if the configuration specifies running the command as a different user.
CVE-2021-4044 5.0Internally libssl in OpenSSL calls X509_verify_cert() on the client side to verify a certificate supplied by a server. That function may return a negative return value to indicate an internal error (for example out of memory). Such a negative return value is mishandled by OpenSSL and will cause an IO function (such as SSL_connect() or SSL_do_handshake()) to not indicate success and a subsequent call to SSL_get_error() to return the value SSL_ERROR_WANT_RETRY_VERIFY. This return value is only supposed to be returned by OpenSSL if the application has previously called SSL_CTX_set_cert_verify_callback(). Since most applications do not do this the SSL_ERROR_WANT_RETRY_VERIFY return value from SSL_get_error() will be totally unexpected and applications may not behave correctly as a result. The exact behaviour will depend on the application but it could result in crashes, infinite loops or other similar incorrect responses. This issue is made more serious in combination with a separate bug in OpenSSL 3.0 that will cause X509_verify_cert() to indicate an internal error when processing a certificate chain. This will occur where a certificate does not include the Subject Alternative Name extension but where a Certificate Authority has enforced name constraints. This issue can occur even with valid chains. By combining the two issues an attacker could induce incorrect, application dependent behaviour. Fixed in OpenSSL 3.0.1 (Affected 3.0.0).
CVE-2021-36368 2.6An issue was discovered in OpenSSH before 8.9. If a client is using public-key authentication with agent forwarding but without -oLogLevel=verbose, and an attacker has silently modified the server to support the None authentication option, then the user cannot determine whether FIDO authentication is going to confirm that the user wishes to connect to that server, or that the user wishes to allow that server to connect to a different server on the user's behalf. NOTE: the vendor's position is "this is not an authentication bypass, since nothing is being bypassed.
CVE-2020-7043 6.4An issue was discovered in openfortivpn 1.11.0 when used with OpenSSL before 1.0.2. tunnel.c mishandles certificate validation because hostname comparisons do not consider '\0' characters, as demonstrated by a good.example.com\x00evil.example.com attack.
CVE-2020-7042 5.0An issue was discovered in openfortivpn 1.11.0 when used with OpenSSL 1.0.2 or later. tunnel.c mishandles certificate validation because the hostname check operates on uninitialized memory. The outcome is that a valid certificate is never accepted (only a malformed certificate may be accepted).
CVE-2020-7041 5.0An issue was discovered in openfortivpn 1.11.0 when used with OpenSSL 1.0.2 or later. tunnel.c mishandles certificate validation because an X509_check_host negative error code is interpreted as a successful return value.
CVE-2020-15778 6.8scp in OpenSSH through 8.3p1 allows command injection in the scp.c toremote function, as demonstrated by backtick characters in the destination argument. NOTE: the vendor reportedly has stated that they intentionally omit validation of "anomalous argument transfers" because that could "stand a great chance of breaking existing workflows."
CVE-2020-14145 4.3The client side in OpenSSH 5.7 through 8.4 has an Observable Discrepancy leading to an information leak in the algorithm negotiation. This allows man-in-the-middle attackers to target initial connection attempts (where no host key for the server has been cached by the client). NOTE: some reports state that 8.5 and 8.6 are also affected.
CVE-2019-6111 5.8An issue was discovered in OpenSSH 7.9. Due to the scp implementation being derived from 1983 rcp, the server chooses which files/directories are sent to the client. However, the scp client only performs cursory validation of the object name returned (only directory traversal attacks are prevented). A malicious scp server (or Man-in-The-Middle attacker) can overwrite arbitrary files in the scp client target directory. If recursive operation (-r) is performed, the server can manipulate subdirectories as well (for example, to overwrite the .ssh/authorized_keys file).
CVE-2019-6110 4.0In OpenSSH 7.9, due to accepting and displaying arbitrary stderr output from the server, a malicious server (or Man-in-The-Middle attacker) can manipulate the client output, for example to use ANSI control codes to hide additional files being transferred.
CVE-2019-6109 4.0An issue was discovered in OpenSSH 7.9. Due to missing character encoding in the progress display, a malicious server (or Man-in-The-Middle attacker) can employ crafted object names to manipulate the client output, e.g., by using ANSI control codes to hide additional files being transferred. This affects refresh_progress_meter() in progressmeter.c.
CVE-2018-20685 2.6In OpenSSH 7.9, scp.c in the scp client allows remote SSH servers to bypass intended access restrictions via the filename of . or an empty filename. The impact is modifying the permissions of the target directory on the client side.
CVE-2018-15919 5.0Remotely observable behaviour in auth-gss2.c in OpenSSH through 7.8 could be used by remote attackers to detect existence of users on a target system when GSS2 is in use. NOTE: the discoverer states 'We understand that the OpenSSH developers do not want to treat such a username enumeration (or "oracle") as a vulnerability.'
CVE-2018-15473 5.0OpenSSH through 7.7 is prone to a user enumeration vulnerability due to not delaying bailout for an invalid authenticating user until after the packet containing the request has been fully parsed, related to auth2-gss.c, auth2-hostbased.c, and auth2-pubkey.c.
CVE-2017-3735 5.0While parsing an IPAddressFamily extension in an X.509 certificate, it is possible to do a one-byte overread. This would result in an incorrect text display of the certificate. This bug has been present since 2006 and is present in all versions of OpenSSL before 1.0.2m and 1.1.0g.
CVE-2017-15906 5.0The process_open function in sftp-server.c in OpenSSH before 7.6 does not properly prevent write operations in readonly mode, which allows attackers to create zero-length files.
CVE-2016-7056 2.1A timing attack flaw was found in OpenSSL 1.0.1u and before that could allow a malicious user with local access to recover ECDSA P-256 private keys.
CVE-2016-2176 6.4The X509_NAME_oneline function in crypto/x509/x509_obj.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to obtain sensitive information from process stack memory or cause a denial of service (buffer over-read) via crafted EBCDIC ASN.1 data.
CVE-2016-2109 7.8The asn1_d2i_read_bio function in crypto/asn1/a_d2i_fp.c in the ASN.1 BIO implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (memory consumption) via a short invalid encoding.
CVE-2016-2108 10.0The ASN.1 implementation in OpenSSL before 1.0.1o and 1.0.2 before 1.0.2c allows remote attackers to execute arbitrary code or cause a denial of service (buffer underflow and memory corruption) via an ANY field in crafted serialized data, aka the "negative zero" issue.
CVE-2016-2107 2.6The AES-NI implementation in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h does not consider memory allocation during a certain padding check, which allows remote attackers to obtain sensitive cleartext information via a padding-oracle attack against an AES CBC session. NOTE: this vulnerability exists because of an incorrect fix for CVE-2013-0169.
CVE-2016-2106 5.0Integer overflow in the EVP_EncryptUpdate function in crypto/evp/evp_enc.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to cause a denial of service (heap memory corruption) via a large amount of data.
CVE-2016-20012 4.3OpenSSH through 8.7 allows remote attackers, who have a suspicion that a certain combination of username and public key is known to an SSH server, to test whether this suspicion is correct. This occurs because a challenge is sent only when that combination could be valid for a login session. NOTE: the vendor does not recognize user enumeration as a vulnerability for this product
CVE-2016-0704 4.3An oracle protection mechanism in the get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a overwrites incorrect MASTER-KEY bytes during use of export cipher suites, which makes it easier for remote attackers to decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800.
CVE-2016-0703 4.3The get_client_master_key function in s2_srvr.c in the SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a accepts a nonzero CLIENT-MASTER-KEY CLEAR-KEY-LENGTH value for an arbitrary cipher, which allows man-in-the-middle attackers to determine the MASTER-KEY value and decrypt TLS ciphertext data by leveraging a Bleichenbacher RSA padding oracle, a related issue to CVE-2016-0800.
CVE-2015-4000 4.3The TLS protocol 1.2 and earlier, when a DHE_EXPORT ciphersuite is enabled on a server but not on a client, does not properly convey a DHE_EXPORT choice, which allows man-in-the-middle attackers to conduct cipher-downgrade attacks by rewriting a ClientHello with DHE replaced by DHE_EXPORT and then rewriting a ServerHello with DHE_EXPORT replaced by DHE, aka the "Logjam" issue.
CVE-2015-3195 5.0The ASN1_TFLG_COMBINE implementation in crypto/asn1/tasn_dec.c in OpenSSL before 0.9.8zh, 1.0.0 before 1.0.0t, 1.0.1 before 1.0.1q, and 1.0.2 before 1.0.2e mishandles errors caused by malformed X509_ATTRIBUTE data, which allows remote attackers to obtain sensitive information from process memory by triggering a decoding failure in a PKCS#7 or CMS application.
CVE-2015-1792 5.0The do_free_upto function in crypto/cms/cms_smime.c in OpenSSL before 0.9.8zg, 1.0.0 before 1.0.0s, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b allows remote attackers to cause a denial of service (infinite loop) via vectors that trigger a NULL value of a BIO data structure, as demonstrated by an unrecognized X.660 OID for a hash function.
CVE-2015-1791 6.8Race condition in the ssl3_get_new_session_ticket function in ssl/s3_clnt.c in OpenSSL before 0.9.8zg, 1.0.0 before 1.0.0s, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b, when used for a multi-threaded client, allows remote attackers to cause a denial of service (double free and application crash) or possibly have unspecified other impact by providing a NewSessionTicket during an attempt to reuse a ticket that had been obtained earlier.
CVE-2015-1790 5.0The PKCS7_dataDecodefunction in crypto/pkcs7/pk7_doit.c in OpenSSL before 0.9.8zg, 1.0.0 before 1.0.0s, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via a PKCS#7 blob that uses ASN.1 encoding and lacks inner EncryptedContent data.
CVE-2015-1789 4.3The X509_cmp_time function in crypto/x509/x509_vfy.c in OpenSSL before 0.9.8zg, 1.0.0 before 1.0.0s, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b allows remote attackers to cause a denial of service (out-of-bounds read and application crash) via a crafted length field in ASN1_TIME data, as demonstrated by an attack against a server that supports client authentication with a custom verification callback.
CVE-2015-1788 4.3The BN_GF2m_mod_inv function in crypto/bn/bn_gf2m.c in OpenSSL before 0.9.8s, 1.0.0 before 1.0.0e, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b does not properly handle ECParameters structures in which the curve is over a malformed binary polynomial field, which allows remote attackers to cause a denial of service (infinite loop) via a session that uses an Elliptic Curve algorithm, as demonstrated by an attack against a server that supports client authentication.
CVE-2015-0293 5.0The SSLv2 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a allows remote attackers to cause a denial of service (s2_lib.c assertion failure and daemon exit) via a crafted CLIENT-MASTER-KEY message.
CVE-2015-0292 7.5Integer underflow in the EVP_DecodeUpdate function in crypto/evp/encode.c in the base64-decoding implementation in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via crafted base64 data that triggers a buffer overflow.
CVE-2015-0289 5.0The PKCS#7 implementation in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a does not properly handle a lack of outer ContentInfo, which allows attackers to cause a denial of service (NULL pointer dereference and application crash) by leveraging an application that processes arbitrary PKCS#7 data and providing malformed data with ASN.1 encoding, related to crypto/pkcs7/pk7_doit.c and crypto/pkcs7/pk7_lib.c.
CVE-2015-0288 5.0The X509_to_X509_REQ function in crypto/x509/x509_req.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a might allow attackers to cause a denial of service (NULL pointer dereference and application crash) via an invalid certificate key.
CVE-2015-0287 5.0The ASN1_item_ex_d2i function in crypto/asn1/tasn_dec.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a does not reinitialize CHOICE and ADB data structures, which might allow attackers to cause a denial of service (invalid write operation and memory corruption) by leveraging an application that relies on ASN.1 structure reuse.
CVE-2015-0286 5.0The ASN1_TYPE_cmp function in crypto/asn1/a_type.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a does not properly perform boolean-type comparisons, which allows remote attackers to cause a denial of service (invalid read operation and application crash) via a crafted X.509 certificate to an endpoint that uses the certificate-verification feature.
CVE-2015-0209 6.8Use-after-free vulnerability in the d2i_ECPrivateKey function in crypto/ec/ec_asn1.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a might allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly have unspecified other impact via a malformed Elliptic Curve (EC) private-key file that is improperly handled during import.
CVE-2015-0204 4.3The ssl3_get_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k allows remote SSL servers to conduct RSA-to-EXPORT_RSA downgrade attacks and facilitate brute-force decryption by offering a weak ephemeral RSA key in a noncompliant role, related to the "FREAK" issue. NOTE: the scope of this CVE is only client code based on OpenSSL, not EXPORT_RSA issues associated with servers or other TLS implementations.
CVE-2014-8275 5.0OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k does not enforce certain constraints on certificate data, which allows remote attackers to defeat a fingerprint-based certificate-blacklist protection mechanism by including crafted data within a certificate's unsigned portion, related to crypto/asn1/a_verify.c, crypto/dsa/dsa_asn1.c, crypto/ecdsa/ecs_vrf.c, and crypto/x509/x_all.c.
CVE-2014-8176 7.5The dtls1_clear_queues function in ssl/d1_lib.c in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h frees data structures without considering that application data can arrive between a ChangeCipherSpec message and a Finished message, which allows remote DTLS peers to cause a denial of service (memory corruption and application crash) or possibly have unspecified other impact via unexpected application data.
CVE-2014-3572 5.0The ssl3_get_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k allows remote SSL servers to conduct ECDHE-to-ECDH downgrade attacks and trigger a loss of forward secrecy by omitting the ServerKeyExchange message.
CVE-2014-3571 5.0OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via a crafted DTLS message that is processed with a different read operation for the handshake header than for the handshake body, related to the dtls1_get_record function in d1_pkt.c and the ssl3_read_n function in s3_pkt.c.
CVE-2014-3570 5.0The BN_sqr implementation in OpenSSL before 0.9.8zd, 1.0.0 before 1.0.0p, and 1.0.1 before 1.0.1k does not properly calculate the square of a BIGNUM value, which might make it easier for remote attackers to defeat cryptographic protection mechanisms via unspecified vectors, related to crypto/bn/asm/mips.pl, crypto/bn/asm/x86_64-gcc.c, and crypto/bn/bn_asm.c.
CVE-2014-3568 4.3OpenSSL before 0.9.8zc, 1.0.0 before 1.0.0o, and 1.0.1 before 1.0.1j does not properly enforce the no-ssl3 build option, which allows remote attackers to bypass intended access restrictions via an SSL 3.0 handshake, related to s23_clnt.c and s23_srvr.c.
CVE-2014-3567 7.1Memory leak in the tls_decrypt_ticket function in t1_lib.c in OpenSSL before 0.9.8zc, 1.0.0 before 1.0.0o, and 1.0.1 before 1.0.1j allows remote attackers to cause a denial of service (memory consumption) via a crafted session ticket that triggers an integrity-check failure.
CVE-2014-3566 4.3The SSL protocol 3.0, as used in OpenSSL through 1.0.1i and other products, uses nondeterministic CBC padding, which makes it easier for man-in-the-middle attackers to obtain cleartext data via a padding-oracle attack, aka the "POODLE" issue.
CVE-2014-3510 4.3The ssl3_send_client_key_exchange function in s3_clnt.c in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i allows remote DTLS servers to cause a denial of service (NULL pointer dereference and client application crash) via a crafted handshake message in conjunction with a (1) anonymous DH or (2) anonymous ECDH ciphersuite.
CVE-2014-3508 4.3The OBJ_obj2txt function in crypto/objects/obj_dat.c in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i, when pretty printing is used, does not ensure the presence of '\0' characters, which allows context-dependent attackers to obtain sensitive information from process stack memory by reading output from X509_name_oneline, X509_name_print_ex, and unspecified other functions.
CVE-2014-3507 5.0Memory leak in d1_both.c in the DTLS implementation in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i allows remote attackers to cause a denial of service (memory consumption) via zero-length DTLS fragments that trigger improper handling of the return value of a certain insert function.
CVE-2014-3506 5.0d1_both.c in the DTLS implementation in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i allows remote attackers to cause a denial of service (memory consumption) via crafted DTLS handshake messages that trigger memory allocations corresponding to large length values.
CVE-2014-3505 5.0Double free vulnerability in d1_both.c in the DTLS implementation in OpenSSL 0.9.8 before 0.9.8zb, 1.0.0 before 1.0.0n, and 1.0.1 before 1.0.1i allows remote attackers to cause a denial of service (application crash) via crafted DTLS packets that trigger an error condition.
CVE-2014-3470 4.3The ssl3_send_client_key_exchange function in s3_clnt.c in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h, when an anonymous ECDH cipher suite is used, allows remote attackers to cause a denial of service (NULL pointer dereference and client crash) by triggering a NULL certificate value.
CVE-2014-0224 5.8OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability.
CVE-2014-0221 4.3The dtls1_get_message_fragment function in d1_both.c in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h allows remote attackers to cause a denial of service (recursion and client crash) via a DTLS hello message in an invalid DTLS handshake.
CVE-2014-0195 6.8The dtls1_reassemble_fragment function in d1_both.c in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly validate fragment lengths in DTLS ClientHello messages, which allows remote attackers to execute arbitrary code or cause a denial of service (buffer overflow and application crash) via a long non-initial fragment.
CVE-2014-0076 1.9The Montgomery ladder implementation in OpenSSL through 1.0.0l does not ensure that certain swap operations have a constant-time behavior, which makes it easier for local users to obtain ECDSA nonces via a FLUSH+RELOAD cache side-channel attack.
CVE-2013-6449 4.3The ssl_get_algorithm2 function in ssl/s3_lib.c in OpenSSL before 1.0.2 obtains a certain version number from an incorrect data structure, which allows remote attackers to cause a denial of service (daemon crash) via crafted traffic from a TLS 1.2 client.
CVE-2013-0169 2.6The TLS protocol 1.1 and 1.2 and the DTLS protocol 1.0 and 1.2, as used in OpenSSL, OpenJDK, PolarSSL, and other products, do not properly consider timing side-channel attacks on a MAC check requirement during the processing of malformed CBC padding, which allows remote attackers to conduct distinguishing attacks and plaintext-recovery attacks via statistical analysis of timing data for crafted packets, aka the "Lucky Thirteen" issue.
CVE-2013-0166 5.0OpenSSL before 0.9.8y, 1.0.0 before 1.0.0k, and 1.0.1 before 1.0.1d does not properly perform signature verification for OCSP responses, which allows remote OCSP servers to cause a denial of service (NULL pointer dereference and application crash) via an invalid key.
CVE-2012-2333 6.8Integer underflow in OpenSSL before 0.9.8x, 1.0.0 before 1.0.0j, and 1.0.1 before 1.0.1c, when TLS 1.1, TLS 1.2, or DTLS is used with CBC encryption, allows remote attackers to cause a denial of service (buffer over-read) or possibly have unspecified other impact via a crafted TLS packet that is not properly handled during a certain explicit IV calculation.
CVE-2012-2110 7.5The asn1_d2i_read_bio function in crypto/asn1/a_d2i_fp.c in OpenSSL before 0.9.8v, 1.0.0 before 1.0.0i, and 1.0.1 before 1.0.1a does not properly interpret integer data, which allows remote attackers to conduct buffer overflow attacks, and cause a denial of service (memory corruption) or possibly have unspecified other impact, via crafted DER data, as demonstrated by an X.509 certificate or an RSA public key.
CVE-2012-0027 5.0The GOST ENGINE in OpenSSL before 1.0.0f does not properly handle invalid parameters for the GOST block cipher, which allows remote attackers to cause a denial of service (daemon crash) via crafted data from a TLS client.
CVE-2011-4619 5.0The Server Gated Cryptography (SGC) implementation in OpenSSL before 0.9.8s and 1.x before 1.0.0f does not properly handle handshake restarts, which allows remote attackers to cause a denial of service (CPU consumption) via unspecified vectors.
CVE-2011-4577 4.3OpenSSL before 0.9.8s and 1.x before 1.0.0f, when RFC 3779 support is enabled, allows remote attackers to cause a denial of service (assertion failure) via an X.509 certificate containing certificate-extension data associated with (1) IP address blocks or (2) Autonomous System (AS) identifiers.
CVE-2011-4576 5.0The SSL 3.0 implementation in OpenSSL before 0.9.8s and 1.x before 1.0.0f does not properly initialize data structures for block cipher padding, which might allow remote attackers to obtain sensitive information by decrypting the padding data sent by an SSL peer.
CVE-2011-4108 4.3The DTLS implementation in OpenSSL before 0.9.8s and 1.x before 1.0.0f performs a MAC check only if certain padding is valid, which makes it easier for remote attackers to recover plaintext via a padding oracle attack.
CVE-2011-1945 2.6The elliptic curve cryptography (ECC) subsystem in OpenSSL 1.0.0d and earlier, when the Elliptic Curve Digital Signature Algorithm (ECDSA) is used for the ECDHE_ECDSA cipher suite, does not properly implement curves over binary fields, which makes it easier for context-dependent attackers to determine private keys via a timing attack and a lattice calculation.
CVE-2011-1473 5.0OpenSSL before 0.9.8l, and 0.9.8m through 1.x, does not properly restrict client-initiated renegotiation within the SSL and TLS protocols, which might make it easier for remote attackers to cause a denial of service (CPU consumption) by performing many renegotiations within a single connection, a different vulnerability than CVE-2011-5094. NOTE: it can also be argued that it is the responsibility of server deployments, not a security library, to prevent or limit renegotiation when it is inappropriate within a specific environment
CVE-2010-5298 4.0Race condition in the ssl3_read_bytes function in s3_pkt.c in OpenSSL through 1.0.1g, when SSL_MODE_RELEASE_BUFFERS is enabled, allows remote attackers to inject data across sessions or cause a denial of service (use-after-free and parsing error) via an SSL connection in a multithreaded environment.
CVE-2010-4252 7.5OpenSSL before 1.0.0c, when J-PAKE is enabled, does not properly validate the public parameters in the J-PAKE protocol, which allows remote attackers to bypass the need for knowledge of the shared secret, and successfully authenticate, by sending crafted values in each round of the protocol.
CVE-2009-3767 4.3libraries/libldap/tls_o.c in OpenLDAP 2.2 and 2.4, and possibly other versions, when OpenSSL is used, does not properly handle a '\0' character in a domain name in the subject's Common Name (CN) field of an X.509 certificate, which allows man-in-the-middle attackers to spoof arbitrary SSL servers via a crafted certificate issued by a legitimate Certification Authority, a related issue to CVE-2009-2408.
CVE-2009-3766 6.8mutt_ssl.c in mutt 1.5.16 and other versions before 1.5.19, when OpenSSL is used, does not verify the domain name in the subject's Common Name (CN) field of an X.509 certificate, which allows man-in-the-middle attackers to spoof SSL servers via an arbitrary valid certificate.
CVE-2009-3765 6.8mutt_ssl.c in mutt 1.5.19 and 1.5.20, when OpenSSL is used, does not properly handle a '\0' character in a domain name in the subject's Common Name (CN) field of an X.509 certificate, which allows man-in-the-middle attackers to spoof arbitrary SSL servers via a crafted certificate issued by a legitimate Certification Authority, a related issue to CVE-2009-2408.
CVE-2009-1390 6.8Mutt 1.5.19, when linked against (1) OpenSSL (mutt_ssl.c) or (2) GnuTLS (mutt_ssl_gnutls.c), allows connections when only one TLS certificate in the chain is accepted instead of verifying the entire chain, which allows remote attackers to spoof trusted servers via a man-in-the-middle attack.
CVE-2008-3844 9.3Certain Red Hat Enterprise Linux (RHEL) 4 and 5 packages for OpenSSH, as signed in August 2008 using a legitimate Red Hat GPG key, contain an externally introduced modification (Trojan Horse) that allows the package authors to have an unknown impact. NOTE: since the malicious packages were not distributed from any official Red Hat sources, the scope of this issue is restricted to users who may have obtained these packages through unofficial distribution points. As of 20080827, no unofficial distributions of this software are known.
CVE-2007-2768 4.3OpenSSH, when using OPIE (One-Time Passwords in Everything) for PAM, allows remote attackers to determine the existence of certain user accounts, which displays a different response if the user account exists and is configured to use one-time passwords (OTP), a similar issue to CVE-2007-2243.
-515149557 | 2024-05-14T01:07:14.481658
  
53 / udp
-1838020997 | 2024-05-13T04:59:04.946060
  
5432 / tcp
1871765607 | 2024-05-12T21:02:34.082798
  
5555 / tcp
-1683387969 | 2024-05-04T04:41:23.206200
  
6633 / tcp
357627055 | 2024-05-04T19:09:03.674211
  
22222 / tcp



Contact Us

Shodan ® - All rights reserved