198.50.180.238

Regular View Raw Data
Last Seen: 2024-03-28

GeneralInformation

Hostnames svr-hosts-000-000.ajiboye.net
mail.svr-hosts-000-000.ajiboye.net
mailadmin.svr-hosts-000-000.ajiboye.net
Domains ajiboye.net 
Country Canada
City Beauharnois
Organization AJIBOYE
ISP OVH SAS
ASN AS16276

Vulnerabilities

Note: the device may not be impacted by all of these issues. The vulnerabilities are implied based on the software and version.

CVE-2024-0727 Issue summary: Processing a maliciously formatted PKCS12 file may lead OpenSSL to crash leading to a potential Denial of Service attack Impact summary: Applications loading files in the PKCS12 format from untrusted sources might terminate abruptly. A file in PKCS12 format can contain certificates and keys and may come from an untrusted source. The PKCS12 specification allows certain fields to be NULL, but OpenSSL does not correctly check for this case. This can lead to a NULL pointer dereference that results in OpenSSL crashing. If an application processes PKCS12 files from an untrusted source using the OpenSSL APIs then that application will be vulnerable to this issue. OpenSSL APIs that are vulnerable to this are: PKCS12_parse(), PKCS12_unpack_p7data(), PKCS12_unpack_p7encdata(), PKCS12_unpack_authsafes() and PKCS12_newpass(). We have also fixed a similar issue in SMIME_write_PKCS7(). However since this function is related to writing data we do not consider it security significant. The FIPS modules in 3.2, 3.1 and 3.0 are not affected by this issue.
CVE-2023-5678 Issue summary: Generating excessively long X9.42 DH keys or checking excessively long X9.42 DH keys or parameters may be very slow. Impact summary: Applications that use the functions DH_generate_key() to generate an X9.42 DH key may experience long delays. Likewise, applications that use DH_check_pub_key(), DH_check_pub_key_ex() or EVP_PKEY_public_check() to check an X9.42 DH key or X9.42 DH parameters may experience long delays. Where the key or parameters that are being checked have been obtained from an untrusted source this may lead to a Denial of Service. While DH_check() performs all the necessary checks (as of CVE-2023-3817), DH_check_pub_key() doesn't make any of these checks, and is therefore vulnerable for excessively large P and Q parameters. Likewise, while DH_generate_key() performs a check for an excessively large P, it doesn't check for an excessively large Q. An application that calls DH_generate_key() or DH_check_pub_key() and supplies a key or parameters obtained from an untrusted source could be vulnerable to a Denial of Service attack. DH_generate_key() and DH_check_pub_key() are also called by a number of other OpenSSL functions. An application calling any of those other functions may similarly be affected. The other functions affected by this are DH_check_pub_key_ex(), EVP_PKEY_public_check(), and EVP_PKEY_generate(). Also vulnerable are the OpenSSL pkey command line application when using the "-pubcheck" option, as well as the OpenSSL genpkey command line application. The OpenSSL SSL/TLS implementation is not affected by this issue. The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue.
CVE-2023-51767 OpenSSH through 9.6, when common types of DRAM are used, might allow row hammer attacks (for authentication bypass) because the integer value of authenticated in mm_answer_authpassword does not resist flips of a single bit. NOTE: this is applicable to a certain threat model of attacker-victim co-location in which the attacker has user privileges.
CVE-2023-51385 In ssh in OpenSSH before 9.6, OS command injection might occur if a user name or host name has shell metacharacters, and this name is referenced by an expansion token in certain situations. For example, an untrusted Git repository can have a submodule with shell metacharacters in a user name or host name.
CVE-2023-51384 In ssh-agent in OpenSSH before 9.6, certain destination constraints can be incompletely applied. When destination constraints are specified during addition of PKCS#11-hosted private keys, these constraints are only applied to the first key, even if a PKCS#11 token returns multiple keys.
CVE-2023-48795 The SSH transport protocol with certain OpenSSH extensions, found in OpenSSH before 9.6 and other products, allows remote attackers to bypass integrity checks such that some packets are omitted (from the extension negotiation message), and a client and server may consequently end up with a connection for which some security features have been downgraded or disabled, aka a Terrapin attack. This occurs because the SSH Binary Packet Protocol (BPP), implemented by these extensions, mishandles the handshake phase and mishandles use of sequence numbers. For example, there is an effective attack against SSH's use of ChaCha20-Poly1305 (and CBC with Encrypt-then-MAC). The bypass occurs in chacha20-poly1305@openssh.com and (if CBC is used) the -etm@openssh.com MAC algorithms. This also affects Maverick Synergy Java SSH API before 3.1.0-SNAPSHOT, Dropbear through 2022.83, Ssh before 5.1.1 in Erlang/OTP, PuTTY before 0.80, AsyncSSH before 2.14.2, golang.org/x/crypto before 0.17.0, libssh before 0.10.6, libssh2 through 1.11.0, Thorn Tech SFTP Gateway before 3.4.6, Tera Term before 5.1, Paramiko before 3.4.0, jsch before 0.2.15, SFTPGo before 2.5.6, Netgate pfSense Plus through 23.09.1, Netgate pfSense CE through 2.7.2, HPN-SSH through 18.2.0, ProFTPD before 1.3.8b (and before 1.3.9rc2), ORYX CycloneSSH before 2.3.4, NetSarang XShell 7 before Build 0144, CrushFTP before 10.6.0, ConnectBot SSH library before 2.2.22, Apache MINA sshd through 2.11.0, sshj through 0.37.0, TinySSH through 20230101, trilead-ssh2 6401, LANCOM LCOS and LANconfig, FileZilla before 3.66.4, Nova before 11.8, PKIX-SSH before 14.4, SecureCRT before 9.4.3, Transmit5 before 5.10.4, Win32-OpenSSH before 9.5.0.0p1-Beta, WinSCP before 6.2.2, Bitvise SSH Server before 9.32, Bitvise SSH Client before 9.33, KiTTY through 0.76.1.13, the net-ssh gem 7.2.0 for Ruby, the mscdex ssh2 module before 1.15.0 for Node.js, the thrussh library before 0.35.1 for Rust, and the Russh crate before 0.40.2 for Rust.
CVE-2023-4807 Issue summary: The POLY1305 MAC (message authentication code) implementation contains a bug that might corrupt the internal state of applications on the Windows 64 platform when running on newer X86_64 processors supporting the AVX512-IFMA instructions. Impact summary: If in an application that uses the OpenSSL library an attacker can influence whether the POLY1305 MAC algorithm is used, the application state might be corrupted with various application dependent consequences. The POLY1305 MAC (message authentication code) implementation in OpenSSL does not save the contents of non-volatile XMM registers on Windows 64 platform when calculating the MAC of data larger than 64 bytes. Before returning to the caller all the XMM registers are set to zero rather than restoring their previous content. The vulnerable code is used only on newer x86_64 processors supporting the AVX512-IFMA instructions. The consequences of this kind of internal application state corruption can be various - from no consequences, if the calling application does not depend on the contents of non-volatile XMM registers at all, to the worst consequences, where the attacker could get complete control of the application process. However given the contents of the registers are just zeroized so the attacker cannot put arbitrary values inside, the most likely consequence, if any, would be an incorrect result of some application dependent calculations or a crash leading to a denial of service. The POLY1305 MAC algorithm is most frequently used as part of the CHACHA20-POLY1305 AEAD (authenticated encryption with associated data) algorithm. The most common usage of this AEAD cipher is with TLS protocol versions 1.2 and 1.3 and a malicious client can influence whether this AEAD cipher is used by the server. This implies that server applications using OpenSSL can be potentially impacted. However we are currently not aware of any concrete application that would be affected by this issue therefore we consider this a Low severity security issue. As a workaround the AVX512-IFMA instructions support can be disabled at runtime by setting the environment variable OPENSSL_ia32cap: OPENSSL_ia32cap=:~0x200000 The FIPS provider is not affected by this issue.
CVE-2023-45802 When a HTTP/2 stream was reset (RST frame) by a client, there was a time window were the request's memory resources were not reclaimed immediately. Instead, de-allocation was deferred to connection close. A client could send new requests and resets, keeping the connection busy and open and causing the memory footprint to keep on growing. On connection close, all resources were reclaimed, but the process might run out of memory before that. This was found by the reporter during testing of CVE-2023-44487 (HTTP/2 Rapid Reset Exploit) with their own test client. During "normal" HTTP/2 use, the probability to hit this bug is very low. The kept memory would not become noticeable before the connection closes or times out. Users are recommended to upgrade to version 2.4.58, which fixes the issue.
CVE-2023-38408 The PKCS#11 feature in ssh-agent in OpenSSH before 9.3p2 has an insufficiently trustworthy search path, leading to remote code execution if an agent is forwarded to an attacker-controlled system. (Code in /usr/lib is not necessarily safe for loading into ssh-agent.) NOTE: this issue exists because of an incomplete fix for CVE-2016-10009.
CVE-2023-3817 Issue summary: Checking excessively long DH keys or parameters may be very slow. Impact summary: Applications that use the functions DH_check(), DH_check_ex() or EVP_PKEY_param_check() to check a DH key or DH parameters may experience long delays. Where the key or parameters that are being checked have been obtained from an untrusted source this may lead to a Denial of Service. The function DH_check() performs various checks on DH parameters. After fixing CVE-2023-3446 it was discovered that a large q parameter value can also trigger an overly long computation during some of these checks. A correct q value, if present, cannot be larger than the modulus p parameter, thus it is unnecessary to perform these checks if q is larger than p. An application that calls DH_check() and supplies a key or parameters obtained from an untrusted source could be vulnerable to a Denial of Service attack. The function DH_check() is itself called by a number of other OpenSSL functions. An application calling any of those other functions may similarly be affected. The other functions affected by this are DH_check_ex() and EVP_PKEY_param_check(). Also vulnerable are the OpenSSL dhparam and pkeyparam command line applications when using the "-check" option. The OpenSSL SSL/TLS implementation is not affected by this issue. The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue.
CVE-2023-31122 Out-of-bounds Read vulnerability in mod_macro of Apache HTTP Server.This issue affects Apache HTTP Server: through 2.4.57.
CVE-2023-27522 HTTP Response Smuggling vulnerability in Apache HTTP Server via mod_proxy_uwsgi. This issue affects Apache HTTP Server: from 2.4.30 through 2.4.55. Special characters in the origin response header can truncate/split the response forwarded to the client.
CVE-2023-2650 Issue summary: Processing some specially crafted ASN.1 object identifiers or data containing them may be very slow. Impact summary: Applications that use OBJ_obj2txt() directly, or use any of the OpenSSL subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS with no message size limit may experience notable to very long delays when processing those messages, which may lead to a Denial of Service. An OBJECT IDENTIFIER is composed of a series of numbers - sub-identifiers - most of which have no size limit. OBJ_obj2txt() may be used to translate an ASN.1 OBJECT IDENTIFIER given in DER encoding form (using the OpenSSL type ASN1_OBJECT) to its canonical numeric text form, which are the sub-identifiers of the OBJECT IDENTIFIER in decimal form, separated by periods. When one of the sub-identifiers in the OBJECT IDENTIFIER is very large (these are sizes that are seen as absurdly large, taking up tens or hundreds of KiBs), the translation to a decimal number in text may take a very long time. The time complexity is O(n^2) with 'n' being the size of the sub-identifiers in bytes (*). With OpenSSL 3.0, support to fetch cryptographic algorithms using names / identifiers in string form was introduced. This includes using OBJECT IDENTIFIERs in canonical numeric text form as identifiers for fetching algorithms. Such OBJECT IDENTIFIERs may be received through the ASN.1 structure AlgorithmIdentifier, which is commonly used in multiple protocols to specify what cryptographic algorithm should be used to sign or verify, encrypt or decrypt, or digest passed data. Applications that call OBJ_obj2txt() directly with untrusted data are affected, with any version of OpenSSL. If the use is for the mere purpose of display, the severity is considered low. In OpenSSL 3.0 and newer, this affects the subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS. It also impacts anything that processes X.509 certificates, including simple things like verifying its signature. The impact on TLS is relatively low, because all versions of OpenSSL have a 100KiB limit on the peer's certificate chain. Additionally, this only impacts clients, or servers that have explicitly enabled client authentication. In OpenSSL 1.1.1 and 1.0.2, this only affects displaying diverse objects, such as X.509 certificates. This is assumed to not happen in such a way that it would cause a Denial of Service, so these versions are considered not affected by this issue in such a way that it would be cause for concern, and the severity is therefore considered low.
CVE-2023-25690 Some mod_proxy configurations on Apache HTTP Server versions 2.4.0 through 2.4.55 allow a HTTP Request Smuggling attack. Configurations are affected when mod_proxy is enabled along with some form of RewriteRule or ProxyPassMatch in which a non-specific pattern matches some portion of the user-supplied request-target (URL) data and is then re-inserted into the proxied request-target using variable substitution. For example, something like: RewriteEngine on RewriteRule "^/here/(.*)" "http://example.com:8080/elsewhere?$1"; [P] ProxyPassReverse /here/ http://example.com:8080/ Request splitting/smuggling could result in bypass of access controls in the proxy server, proxying unintended URLs to existing origin servers, and cache poisoning. Users are recommended to update to at least version 2.4.56 of Apache HTTP Server.
CVE-2023-0466 The function X509_VERIFY_PARAM_add0_policy() is documented to implicitly enable the certificate policy check when doing certificate verification. However the implementation of the function does not enable the check which allows certificates with invalid or incorrect policies to pass the certificate verification. As suddenly enabling the policy check could break existing deployments it was decided to keep the existing behavior of the X509_VERIFY_PARAM_add0_policy() function. Instead the applications that require OpenSSL to perform certificate policy check need to use X509_VERIFY_PARAM_set1_policies() or explicitly enable the policy check by calling X509_VERIFY_PARAM_set_flags() with the X509_V_FLAG_POLICY_CHECK flag argument. Certificate policy checks are disabled by default in OpenSSL and are not commonly used by applications.
CVE-2023-0465 Applications that use a non-default option when verifying certificates may be vulnerable to an attack from a malicious CA to circumvent certain checks. Invalid certificate policies in leaf certificates are silently ignored by OpenSSL and other certificate policy checks are skipped for that certificate. A malicious CA could use this to deliberately assert invalid certificate policies in order to circumvent policy checking on the certificate altogether. Policy processing is disabled by default but can be enabled by passing the `-policy' argument to the command line utilities or by calling the `X509_VERIFY_PARAM_set1_policies()' function.
CVE-2023-0464 A security vulnerability has been identified in all supported versions of OpenSSL related to the verification of X.509 certificate chains that include policy constraints. Attackers may be able to exploit this vulnerability by creating a malicious certificate chain that triggers exponential use of computational resources, leading to a denial-of-service (DoS) attack on affected systems. Policy processing is disabled by default but can be enabled by passing the `-policy' argument to the command line utilities or by calling the `X509_VERIFY_PARAM_set1_policies()' function.
CVE-2023-0286 There is a type confusion vulnerability relating to X.400 address processing inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING but the public structure definition for GENERAL_NAME incorrectly specified the type of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an ASN1_STRING. When CRL checking is enabled (i.e. the application sets the X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass arbitrary pointers to a memcmp call, enabling them to read memory contents or enact a denial of service. In most cases, the attack requires the attacker to provide both the certificate chain and CRL, neither of which need to have a valid signature. If the attacker only controls one of these inputs, the other input must already contain an X.400 address as a CRL distribution point, which is uncommon. As such, this vulnerability is most likely to only affect applications which have implemented their own functionality for retrieving CRLs over a network.
CVE-2023-0215 The public API function BIO_new_NDEF is a helper function used for streaming ASN.1 data via a BIO. It is primarily used internally to OpenSSL to support the SMIME, CMS and PKCS7 streaming capabilities, but may also be called directly by end user applications. The function receives a BIO from the caller, prepends a new BIO_f_asn1 filter BIO onto the front of it to form a BIO chain, and then returns the new head of the BIO chain to the caller. Under certain conditions, for example if a CMS recipient public key is invalid, the new filter BIO is freed and the function returns a NULL result indicating a failure. However, in this case, the BIO chain is not properly cleaned up and the BIO passed by the caller still retains internal pointers to the previously freed filter BIO. If the caller then goes on to call BIO_pop() on the BIO then a use-after-free will occur. This will most likely result in a crash. This scenario occurs directly in the internal function B64_write_ASN1() which may cause BIO_new_NDEF() to be called and will subsequently call BIO_pop() on the BIO. This internal function is in turn called by the public API functions PEM_write_bio_ASN1_stream, PEM_write_bio_CMS_stream, PEM_write_bio_PKCS7_stream, SMIME_write_ASN1, SMIME_write_CMS and SMIME_write_PKCS7. Other public API functions that may be impacted by this include i2d_ASN1_bio_stream, BIO_new_CMS, BIO_new_PKCS7, i2d_CMS_bio_stream and i2d_PKCS7_bio_stream. The OpenSSL cms and smime command line applications are similarly affected.
CVE-2022-4450 The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data. If the function succeeds then the "name_out", "header" and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. It is possible to construct a PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a buffer that has already been freed. If the caller also frees this buffer then a double free will occur. This will most likely lead to a crash. This could be exploited by an attacker who has the ability to supply malicious PEM files for parsing to achieve a denial of service attack. The functions PEM_read_bio() and PEM_read() are simple wrappers around PEM_read_bio_ex() and therefore these functions are also directly affected. These functions are also called indirectly by a number of other OpenSSL functions including PEM_X509_INFO_read_bio_ex() and SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal uses of these functions are not vulnerable because the caller does not free the header argument if PEM_read_bio_ex() returns a failure code. These locations include the PEM_read_bio_TYPE() functions as well as the decoders introduced in OpenSSL 3.0. The OpenSSL asn1parse command line application is also impacted by this issue.
CVE-2022-4304 A timing based side channel exists in the OpenSSL RSA Decryption implementation which could be sufficient to recover a plaintext across a network in a Bleichenbacher style attack. To achieve a successful decryption an attacker would have to be able to send a very large number of trial messages for decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE. For example, in a TLS connection, RSA is commonly used by a client to send an encrypted pre-master secret to the server. An attacker that had observed a genuine connection between a client and a server could use this flaw to send trial messages to the server and record the time taken to process them. After a sufficiently large number of messages the attacker could recover the pre-master secret used for the original connection and thus be able to decrypt the application data sent over that connection.
CVE-2022-37436 Prior to Apache HTTP Server 2.4.55, a malicious backend can cause the response headers to be truncated early, resulting in some headers being incorporated into the response body. If the later headers have any security purpose, they will not be interpreted by the client.
CVE-2022-36760 Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling') vulnerability in mod_proxy_ajp of Apache HTTP Server allows an attacker to smuggle requests to the AJP server it forwards requests to. This issue affects Apache HTTP Server Apache HTTP Server 2.4 version 2.4.54 and prior versions.
CVE-2022-31813 7.5Apache HTTP Server 2.4.53 and earlier may not send the X-Forwarded-* headers to the origin server based on client side Connection header hop-by-hop mechanism. This may be used to bypass IP based authentication on the origin server/application.
CVE-2022-31629 In PHP versions before 7.4.31, 8.0.24 and 8.1.11, the vulnerability enables network and same-site attackers to set a standard insecure cookie in the victim's browser which is treated as a `__Host-` or `__Secure-` cookie by PHP applications.
CVE-2022-31628 In PHP versions before 7.4.31, 8.0.24 and 8.1.11, the phar uncompressor code would recursively uncompress "quines" gzip files, resulting in an infinite loop.
CVE-2022-30556 5.0Apache HTTP Server 2.4.53 and earlier may return lengths to applications calling r:wsread() that point past the end of the storage allocated for the buffer.
CVE-2022-29404 5.0In Apache HTTP Server 2.4.53 and earlier, a malicious request to a lua script that calls r:parsebody(0) may cause a denial of service due to no default limit on possible input size.
CVE-2022-28615 6.4Apache HTTP Server 2.4.53 and earlier may crash or disclose information due to a read beyond bounds in ap_strcmp_match() when provided with an extremely large input buffer. While no code distributed with the server can be coerced into such a call, third-party modules or lua scripts that use ap_strcmp_match() may hypothetically be affected.
CVE-2022-28614 5.0The ap_rwrite() function in Apache HTTP Server 2.4.53 and earlier may read unintended memory if an attacker can cause the server to reflect very large input using ap_rwrite() or ap_rputs(), such as with mod_luas r:puts() function. Modules compiled and distributed separately from Apache HTTP Server that use the 'ap_rputs' function and may pass it a very large (INT_MAX or larger) string must be compiled against current headers to resolve the issue.
CVE-2022-28330 5.0Apache HTTP Server 2.4.53 and earlier on Windows may read beyond bounds when configured to process requests with the mod_isapi module.
CVE-2022-26377 5.0Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling') vulnerability in mod_proxy_ajp of Apache HTTP Server allows an attacker to smuggle requests to the AJP server it forwards requests to. This issue affects Apache HTTP Server Apache HTTP Server 2.4 version 2.4.53 and prior versions.
CVE-2022-23943 7.5Out-of-bounds Write vulnerability in mod_sed of Apache HTTP Server allows an attacker to overwrite heap memory with possibly attacker provided data. This issue affects Apache HTTP Server 2.4 version 2.4.52 and prior versions.
CVE-2022-22721 5.8If LimitXMLRequestBody is set to allow request bodies larger than 350MB (defaults to 1M) on 32 bit systems an integer overflow happens which later causes out of bounds writes. This issue affects Apache HTTP Server 2.4.52 and earlier.
CVE-2022-22720 7.5Apache HTTP Server 2.4.52 and earlier fails to close inbound connection when errors are encountered discarding the request body, exposing the server to HTTP Request Smuggling
CVE-2022-22719 5.0A carefully crafted request body can cause a read to a random memory area which could cause the process to crash. This issue affects Apache HTTP Server 2.4.52 and earlier.
CVE-2022-2097 5.0AES OCB mode for 32-bit x86 platforms using the AES-NI assembly optimised implementation will not encrypt the entirety of the data under some circumstances. This could reveal sixteen bytes of data that was preexisting in the memory that wasn't written. In the special case of "in place" encryption, sixteen bytes of the plaintext would be revealed. Since OpenSSL does not support OCB based cipher suites for TLS and DTLS, they are both unaffected. Fixed in OpenSSL 3.0.5 (Affected 3.0.0-3.0.4). Fixed in OpenSSL 1.1.1q (Affected 1.1.1-1.1.1p).
CVE-2022-2068 10.0In addition to the c_rehash shell command injection identified in CVE-2022-1292, further circumstances where the c_rehash script does not properly sanitise shell metacharacters to prevent command injection were found by code review. When the CVE-2022-1292 was fixed it was not discovered that there are other places in the script where the file names of certificates being hashed were possibly passed to a command executed through the shell. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.4 (Affected 3.0.0,3.0.1,3.0.2,3.0.3). Fixed in OpenSSL 1.1.1p (Affected 1.1.1-1.1.1o). Fixed in OpenSSL 1.0.2zf (Affected 1.0.2-1.0.2ze).
CVE-2022-1292 10.0The c_rehash script does not properly sanitise shell metacharacters to prevent command injection. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2). Fixed in OpenSSL 1.1.1o (Affected 1.1.1-1.1.1n). Fixed in OpenSSL 1.0.2ze (Affected 1.0.2-1.0.2zd).
CVE-2022-0778 5.0The BN_mod_sqrt() function, which computes a modular square root, contains a bug that can cause it to loop forever for non-prime moduli. Internally this function is used when parsing certificates that contain elliptic curve public keys in compressed form or explicit elliptic curve parameters with a base point encoded in compressed form. It is possible to trigger the infinite loop by crafting a certificate that has invalid explicit curve parameters. Since certificate parsing happens prior to verification of the certificate signature, any process that parses an externally supplied certificate may thus be subject to a denial of service attack. The infinite loop can also be reached when parsing crafted private keys as they can contain explicit elliptic curve parameters. Thus vulnerable situations include: - TLS clients consuming server certificates - TLS servers consuming client certificates - Hosting providers taking certificates or private keys from customers - Certificate authorities parsing certification requests from subscribers - Anything else which parses ASN.1 elliptic curve parameters Also any other applications that use the BN_mod_sqrt() where the attacker can control the parameter values are vulnerable to this DoS issue. In the OpenSSL 1.0.2 version the public key is not parsed during initial parsing of the certificate which makes it slightly harder to trigger the infinite loop. However any operation which requires the public key from the certificate will trigger the infinite loop. In particular the attacker can use a self-signed certificate to trigger the loop during verification of the certificate signature. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0. It was addressed in the releases of 1.1.1n and 3.0.2 on the 15th March 2022. Fixed in OpenSSL 3.0.2 (Affected 3.0.0,3.0.1). Fixed in OpenSSL 1.1.1n (Affected 1.1.1-1.1.1m). Fixed in OpenSSL 1.0.2zd (Affected 1.0.2-1.0.2zc).
CVE-2021-44790 7.5A carefully crafted request body can cause a buffer overflow in the mod_lua multipart parser (r:parsebody() called from Lua scripts). The Apache httpd team is not aware of an exploit for the vulnerabilty though it might be possible to craft one. This issue affects Apache HTTP Server 2.4.51 and earlier.
CVE-2021-44224 6.4A crafted URI sent to httpd configured as a forward proxy (ProxyRequests on) can cause a crash (NULL pointer dereference) or, for configurations mixing forward and reverse proxy declarations, can allow for requests to be directed to a declared Unix Domain Socket endpoint (Server Side Request Forgery). This issue affects Apache HTTP Server 2.4.7 up to 2.4.51 (included).
CVE-2021-4160 4.3There is a carry propagation bug in the MIPS32 and MIPS64 squaring procedure. Many EC algorithms are affected, including some of the TLS 1.3 default curves. Impact was not analyzed in detail, because the pre-requisites for attack are considered unlikely and include reusing private keys. Analysis suggests that attacks against RSA and DSA as a result of this defect would be very difficult to perform and are not believed likely. Attacks against DH are considered just feasible (although very difficult) because most of the work necessary to deduce information about a private key may be performed offline. The amount of resources required for such an attack would be significant. However, for an attack on TLS to be meaningful, the server would have to share the DH private key among multiple clients, which is no longer an option since CVE-2016-0701. This issue affects OpenSSL versions 1.0.2, 1.1.1 and 3.0.0. It was addressed in the releases of 1.1.1m and 3.0.1 on the 15th of December 2021. For the 1.0.2 release it is addressed in git commit 6fc1aaaf3 that is available to premium support customers only. It will be made available in 1.0.2zc when it is released. The issue only affects OpenSSL on MIPS platforms. Fixed in OpenSSL 3.0.1 (Affected 3.0.0). Fixed in OpenSSL 1.1.1m (Affected 1.1.1-1.1.1l). Fixed in OpenSSL 1.0.2zc-dev (Affected 1.0.2-1.0.2zb).
CVE-2021-36368 2.6An issue was discovered in OpenSSH before 8.9. If a client is using public-key authentication with agent forwarding but without -oLogLevel=verbose, and an attacker has silently modified the server to support the None authentication option, then the user cannot determine whether FIDO authentication is going to confirm that the user wishes to connect to that server, or that the user wishes to allow that server to connect to a different server on the user's behalf. NOTE: the vendor's position is "this is not an authentication bypass, since nothing is being bypassed.
CVE-2020-11579 5.0An issue was discovered in Chadha PHPKB 9.0 Enterprise Edition. installer/test-connection.php (part of the installation process) allows a remote unauthenticated attacker to disclose local files on hosts running PHP before 7.2.16, or on hosts where the MySQL ALLOW LOCAL DATA INFILE option is enabled.
CVE-2019-9641 7.5An issue was discovered in the EXIF component in PHP before 7.1.27, 7.2.x before 7.2.16, and 7.3.x before 7.3.3. There is an uninitialized read in exif_process_IFD_in_TIFF.
CVE-2019-9639 5.0An issue was discovered in the EXIF component in PHP before 7.1.27, 7.2.x before 7.2.16, and 7.3.x before 7.3.3. There is an uninitialized read in exif_process_IFD_in_MAKERNOTE because of mishandling the data_len variable.
CVE-2019-9638 5.0An issue was discovered in the EXIF component in PHP before 7.1.27, 7.2.x before 7.2.16, and 7.3.x before 7.3.3. There is an uninitialized read in exif_process_IFD_in_MAKERNOTE because of mishandling the maker_note->offset relationship to value_len.
CVE-2019-9637 5.0An issue was discovered in PHP before 7.1.27, 7.2.x before 7.2.16, and 7.3.x before 7.3.3. Due to the way rename() across filesystems is implemented, it is possible that file being renamed is briefly available with wrong permissions while the rename is ongoing, thus enabling unauthorized users to access the data.
CVE-2019-0190 5.0A bug exists in the way mod_ssl handled client renegotiations. A remote attacker could send a carefully crafted request that would cause mod_ssl to enter a loop leading to a denial of service. This bug can be only triggered with Apache HTTP Server version 2.4.37 when using OpenSSL version 1.1.1 or later, due to an interaction in changes to handling of renegotiation attempts.
CVE-2018-19396 5.0ext/standard/var_unserializer.c in PHP 5.x through 7.1.24 allows attackers to cause a denial of service (application crash) via an unserialize call for the com, dotnet, or variant class.
CVE-2018-19395 5.0ext/standard/var.c in PHP 5.x through 7.1.24 on Windows allows attackers to cause a denial of service (NULL pointer dereference and application crash) because com and com_safearray_proxy return NULL in com_properties_get in ext/com_dotnet/com_handlers.c, as demonstrated by a serialize call on COM("WScript.Shell").
CVE-2017-8923 7.5The zend_string_extend function in Zend/zend_string.h in PHP through 7.1.5 does not prevent changes to string objects that result in a negative length, which allows remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact by leveraging a script's use of .= with a long string.
CVE-2017-7963 5.0The GNU Multiple Precision Arithmetic Library (GMP) interfaces for PHP through 7.1.4 allow attackers to cause a denial of service (memory consumption and application crash) via operations on long strings. NOTE: the vendor disputes this, stating "There is no security issue here, because GMP safely aborts in case of an OOM condition. The only attack vector here is denial of service. However, if you allow attacker-controlled, unbounded allocations you have a DoS vector regardless of GMP's OOM behavior.
CVE-2017-7272 5.8PHP through 7.1.11 enables potential SSRF in applications that accept an fsockopen or pfsockopen hostname argument with an expectation that the port number is constrained. Because a :port syntax is recognized, fsockopen will use the port number that is specified in the hostname argument, instead of the port number in the second argument of the function.
CVE-2015-9253 6.8An issue was discovered in PHP 7.3.x before 7.3.0alpha3, 7.2.x before 7.2.8, and before 7.1.20. The php-fpm master process restarts a child process in an endless loop when using program execution functions (e.g., passthru, exec, shell_exec, or system) with a non-blocking STDIN stream, causing this master process to consume 100% of the CPU, and consume disk space with a large volume of error logs, as demonstrated by an attack by a customer of a shared-hosting facility.
CVE-2013-4365 7.5Heap-based buffer overflow in the fcgid_header_bucket_read function in fcgid_bucket.c in the mod_fcgid module before 2.3.9 for the Apache HTTP Server allows remote attackers to have an unspecified impact via unknown vectors.
CVE-2013-2765 5.0The ModSecurity module before 2.7.4 for the Apache HTTP Server allows remote attackers to cause a denial of service (NULL pointer dereference, process crash, and disk consumption) via a POST request with a large body and a crafted Content-Type header.
CVE-2013-2220 7.5Buffer overflow in the radius_get_vendor_attr function in the Radius extension before 1.2.7 for PHP allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via a large Vendor Specific Attributes (VSA) length value.
CVE-2013-0942 4.3Cross-site scripting (XSS) vulnerability in EMC RSA Authentication Agent 7.1 before 7.1.1 for Web for Internet Information Services, and 7.1 before 7.1.1 for Web for Apache, allows remote attackers to inject arbitrary web script or HTML via unspecified vectors.
CVE-2013-0941 2.1EMC RSA Authentication API before 8.1 SP1, RSA Web Agent before 5.3.5 for Apache Web Server, RSA Web Agent before 5.3.5 for IIS, RSA PAM Agent before 7.0, and RSA Agent before 6.1.4 for Microsoft Windows use an improper encryption algorithm and a weak key for maintaining the stored data of the node secret for the SecurID Authentication API, which allows local users to obtain sensitive information via cryptographic attacks on this data.
CVE-2012-4360 4.3Cross-site scripting (XSS) vulnerability in the mod_pagespeed module 0.10.19.1 through 0.10.22.4 for the Apache HTTP Server allows remote attackers to inject arbitrary web script or HTML via unspecified vectors.
CVE-2012-4001 5.0The mod_pagespeed module before 0.10.22.6 for the Apache HTTP Server does not properly verify its host name, which allows remote attackers to trigger HTTP requests to arbitrary hosts via unspecified vectors, as demonstrated by requests to intranet servers.
CVE-2012-3526 5.0The reverse proxy add forward module (mod_rpaf) 0.5 and 0.6 for the Apache HTTP Server allows remote attackers to cause a denial of service (server or application crash) via multiple X-Forwarded-For headers in a request.
CVE-2011-2688 7.5SQL injection vulnerability in mysql/mysql-auth.pl in the mod_authnz_external module 3.2.5 and earlier for the Apache HTTP Server allows remote attackers to execute arbitrary SQL commands via the user field.
CVE-2011-1176 4.3The configuration merger in itk.c in the Steinar H. Gunderson mpm-itk Multi-Processing Module 2.2.11-01 and 2.2.11-02 for the Apache HTTP Server does not properly handle certain configuration sections that specify NiceValue but not AssignUserID, which might allow remote attackers to gain privileges by leveraging the root uid and root gid of an mpm-itk process.
CVE-2009-3767 4.3libraries/libldap/tls_o.c in OpenLDAP 2.2 and 2.4, and possibly other versions, when OpenSSL is used, does not properly handle a '\0' character in a domain name in the subject's Common Name (CN) field of an X.509 certificate, which allows man-in-the-middle attackers to spoof arbitrary SSL servers via a crafted certificate issued by a legitimate Certification Authority, a related issue to CVE-2009-2408.
CVE-2009-3766 6.8mutt_ssl.c in mutt 1.5.16 and other versions before 1.5.19, when OpenSSL is used, does not verify the domain name in the subject's Common Name (CN) field of an X.509 certificate, which allows man-in-the-middle attackers to spoof SSL servers via an arbitrary valid certificate.
CVE-2009-3765 6.8mutt_ssl.c in mutt 1.5.19 and 1.5.20, when OpenSSL is used, does not properly handle a '\0' character in a domain name in the subject's Common Name (CN) field of an X.509 certificate, which allows man-in-the-middle attackers to spoof arbitrary SSL servers via a crafted certificate issued by a legitimate Certification Authority, a related issue to CVE-2009-2408.
CVE-2009-2299 5.0The Artofdefence Hyperguard Web Application Firewall (WAF) module before 2.5.5-11635, 3.0 before 3.0.3-11636, and 3.1 before 3.1.1-11637, a module for the Apache HTTP Server, allows remote attackers to cause a denial of service (memory consumption) via an HTTP request with a large Content-Length value but no POST data.
CVE-2009-1390 6.8Mutt 1.5.19, when linked against (1) OpenSSL (mutt_ssl.c) or (2) GnuTLS (mutt_ssl_gnutls.c), allows connections when only one TLS certificate in the chain is accepted instead of verifying the entire chain, which allows remote attackers to spoof trusted servers via a man-in-the-middle attack.
CVE-2009-0796 2.6Cross-site scripting (XSS) vulnerability in Status.pm in Apache::Status and Apache2::Status in mod_perl1 and mod_perl2 for the Apache HTTP Server, when /perl-status is accessible, allows remote attackers to inject arbitrary web script or HTML via the URI.
CVE-2008-3844 9.3Certain Red Hat Enterprise Linux (RHEL) 4 and 5 packages for OpenSSH, as signed in August 2008 using a legitimate Red Hat GPG key, contain an externally introduced modification (Trojan Horse) that allows the package authors to have an unknown impact. NOTE: since the malicious packages were not distributed from any official Red Hat sources, the scope of this issue is restricted to users who may have obtained these packages through unofficial distribution points. As of 20080827, no unofficial distributions of this software are known.
CVE-2007-4723 7.5Directory traversal vulnerability in Ragnarok Online Control Panel 4.3.4a, when the Apache HTTP Server is used, allows remote attackers to bypass authentication via directory traversal sequences in a URI that ends with the name of a publicly available page, as demonstrated by a "/...../" sequence and an account_manage.php/login.php final component for reaching the protected account_manage.php page.
CVE-2007-3205 5.0The parse_str function in (1) PHP, (2) Hardened-PHP, and (3) Suhosin, when called without a second parameter, might allow remote attackers to overwrite arbitrary variables by specifying variable names and values in the string to be parsed. NOTE: it is not clear whether this is a design limitation of the function or a bug in PHP, although it is likely to be regarded as a bug in Hardened-PHP and Suhosin.
CVE-2007-2768 4.3OpenSSH, when using OPIE (One-Time Passwords in Everything) for PAM, allows remote attackers to determine the existence of certain user accounts, which displays a different response if the user account exists and is configured to use one-time passwords (OTP), a similar issue to CVE-2007-2243.
CVE-2006-20001 A carefully crafted If: request header can cause a memory read, or write of a single zero byte, in a pool (heap) memory location beyond the header value sent. This could cause the process to crash. This issue affects Apache HTTP Server 2.4.54 and earlier.
-128748946 | 2024-03-28T04:50:08.544700
  
21 / tcp
-2027388912 | 2024-03-26T04:01:45.552946
  
22 / tcp
716921548 | 2024-03-23T18:57:21.914460
  
25 / tcp
-1207018705 | 2024-03-27T22:51:53.295116
  
80 / tcp
1313010496 | 2024-03-27T22:51:55.864572
  
443 / tcp
-1099288400 | 2024-03-23T02:41:07.561924
  
465 / tcp
-1099288400 | 2024-03-26T18:02:35.076777
  
587 / tcp
1535088112 | 2024-03-21T14:14:55.454646
  
993 / tcp
1366176485 | 2024-03-18T16:51:06.014137
  
995 / tcp



Contact Us

Shodan ® - All rights reserved